Abstract

The purpose of this study was to investigate whether excessive extracellular matrix (ECM) deposition-induced mechanical matrix stiffness plays a key role in promoting retinal pigment epithelial (RPE) cell activation and the subsequent development of proliferative vitreoretinopathy (PVR). Human ARPE-19 cells were cultured on either 50 kappa (stiff) or 0.5 kappa (soft) gel-coated coverslips. Reverse and knockdown experiments were carried out to establish a model of matrix stiffness-induced activation in ARPE-19 cells in vitro. A PVR mouse model was established by the intravitreal injection of dispase. The effects of RhoA/YAP signalling blockade on matrix stiffness-induced ARPE-19 cell activation and PVR-induced retinal fibrosis were determined by using a combination of the Yes-associated protein (YAP) inhibitor verteporfin and the RhoA inhibitor C3 exoenzyme. Matrix stiffness stimulated YAP nuclear translocation and expression in ARPE-19 cells. The effect of YAP activation was dependent on F-actin cytoskeleton polymerization and RhoA activity, forming the RhoA/YAP signalling pathway. Upstream pharmacological blockade of RhoA by C3 exoenzyme or downstream blockade of YAP by verteporfin reduced the invasion, migration, and MMP expression of ARPE-19 cells and collagen gel contraction. Furthermore, blockade of RhoA/YAP signalling reduced PVR-induced retinal fibrogenesis and inhibited the TGF-β/Smad pathway in vivo. RhoA/YAP signalling modulates matrix stiffness-induced activation of ARPE-19 cells. Targeting this signalling pathway could alleviate PVR-induced retinal fibrosis and suggests attractive novel therapeutic strategies for intervening in the progression of PVR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call