Abstract

Ample data support a prominent role of peripheral T-type calcium channels 3.2 (Ca V 3.2) in generating pain states. Development of primary sensory neuron-specific inhibitors of Ca V 3.2 channels is an opportunity for achieving effective analgesic therapeutics, but success has been elusive. Small peptides, especially those derived from natural proteins as inhibitory peptide aptamers (iPAs), can produce highly effective and selective blockade of specific nociceptive molecular pathways to reduce pain with minimal off-target effects. In this study, we report the engineering of the potent and selective iPAs of Ca V 3.2 from the intrinsically disordered regions (IDRs) of Ca V 3.2 intracellular segments. Using established prediction algorithms, we localized the IDRs in Ca V 3.2 protein and identified several Ca V 3.2iPA candidates that significantly reduced Ca V 3.2 current in HEK293 cells stably expressing human wide-type Ca V 3.2. Two prototype Ca V 3.2iPAs (iPA1 and iPA2) derived from the IDRs of Ca V 3.2 intracellular loops 2 and 3, respectively, were expressed selectively in the primary sensory neurons of dorsal root ganglia in vivo using recombinant adeno-associated virus (AAV), which produced sustained inhibition of calcium current conducted by Ca V 3.2/T-type channels and significantly attenuated both evoked and spontaneous pain behavior in rats with neuropathic pain after tibial nerve injury. Recordings from dissociated sensory neurons showed that AAV-mediated Ca V 3.2iPA expression suppressed neuronal excitability, suggesting that Ca V 3.2iPA treatment attenuated pain by reversal of injury-induced neuronal hypersensitivity. Collectively, our results indicate that Ca V 3.2iPAs are promising analgesic leads that, combined with AAV-mediated delivery in anatomically targeted sensory ganglia, have the potential to be a selective peripheral Ca V 3.2-targeting strategy for clinical treatment of pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.