Abstract

IntroductionBasal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action.MethodsAn unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process.ResultsWe found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs.ConclusionOur findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-015-0607-y) contains supplementary material, which is available to authorized users.

Highlights

  • Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options

  • We focused on cluster 9 containing 29 genes significantly upregulated in the metastatic MIV compared with their non-metastatic counterparts, the MII and MIII cell lines (Additional file 2: Figure S1)

  • We found that higher expression of 10 out of the 29 genes could individually predict worse distant metastasis-free survival (DMFS) of patients with breast cancer (Additional file 3: Figure S2)

Read more

Summary

Introduction

Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Cancer metastasis represents a multistep event which can be broadly divided in two phases: The first one represents the physical dissemination of cancer cells to distant tissues, and the second involves the development of macrometastatic lesions in these organs [1] These steps involve the sequential acquisition of genetic and epigenetic alterations which provide a level of cellular plasticity that is indispensable for the completion of the metastatic process [2, 3]. A previous gene expression profiling study indicated that IL13Rα2 is overexpressed in breast tumors from patients who developed lung metastases [23], its functional role and underlying mechanism of action in breast cancer development and progression remain largely unknown

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call