Abstract

Dengue is a rapidly evolving arboviral disease that mainly affects tropical and subtropical regions of the world. The lack of therapeutic drugs and effective vaccines suggests that further resources need to be investigated. The effectiveness of the existing dengue vaccine is improbable as its efficacy depends on prior exposure to the dengue virus(DENV). Although the mechanism underlying the action of bioactive compounds to limit viral replication is less studied and still needs to be further explored, medicinal plants are excellent alternatives to combat DENV infection. In the current study, an in silico screening of phytochemicals from Annona reticulata Linn. against human Impdh2 was performed using Autodock Vina. Daucosterol (−9.0 kcal/mol) and Kaurenoic acid (−8.5 kcal/mol) were chosen as the top hits based on molecular interaction analysis. The hits were further exposed to pharmacokinetics and toxicity properties to determine their drug-like parameters. Molecular dynamics simulation studies of the Impdh2-top hits were carried out to investigate their kinetic behaviour and structural stabilities. The binding free energies of the Impdh2-hit complexes were determined using MM-PBSA analysis. According to the overall conclusions of the study, Daucosterol showed good binding affinity and high structural stability to the binding site residues of the target, therefore it is recommended as a lead compound against dengue. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call