Abstract

The purpose of this study was to find hub genes that may play key roles in skeletal muscle injury induced by jumping load. Twelve female Sprague Dawley rats were divided into the normal control (NC) group and the jumping-induced muscle injury (JI) group. After 6 weeks of jumping, transmission electron microscopy, hematoxylin-eosin staining, transcriptomics sequencing and genes analysis, interaction network prediction of multiple proteins, real-time PCR detection, and Western blotting were performed on gastrocnemius muscles from NC and JI groups. As compared with NC rats, excessive jumping can result in notable structural damage and inflammatory infiltration in JI rats. A total of 112 differentially expressed genes were confirmed in NC rats versus JI rats, with 59 genes upregulated and 53 genes downregulated. Using the online String database, four hub genes in the transcriptional regulatory network were targeted, including FOS, EGR1, ATF3, and NR4A3. All expression levels of FOS, EGR1, ATF3, and NR4A3 mRNAs were decreased in JI rats compared with NC rats (p < 0.05 or p < 0.01). All expression levels of c-Fos, EGR1, ATF3, and NOR1 proteins were upregulated in JI rats (p < 0.01, p < 0.05, p > 0.05, and p < 0.01, respectively). Collectively, these findings indicate that FOS, EGR1, ATF3, and NR4A3 genes may be functionally important in jumping-induced muscle injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.