Abstract

While most Helicobacter pylori-infected individuals remain asymptomatic throughout their lifetime, in a significant proportion, the resulting severe chronic gastritis drives the development of gastric cancer. In this study, we examine a new therapeutic target, a host potassium channel regulatory subunit, SUR2 (encoded by ABCC9), with potential to protect against H pylori-associated diseases. SUR2 gene (ABCC9) expression in human gastric biopsies was analyzed by quantitative polymerase chain reactions. Helicobacter-infected mice were administered the SUR2-channel agonists, pinacidil and nicorandil, then gastric tissues analyzed by histology, immunohistochemistry and quantitative polymerase chain reaction, and splenic tissues by enzyme-linked immunosorbent assays. Invitro studies were performed on human and mouse macrophages, human gastric epithelial cells and mouse splenocytes. ABCC9 expression in human and mouse stomachs is downregulated with H pylori infection. Treatment of Helicobacter-infected mice with SUR2 channel modulators, pinacidil or nicorandil, significantly reduced gastritis severity. In gastric epithelial cells, nicorandil-induced opening of the SUR2 channel increased intracellular K+ and prevented H pylori-mediated Ca2+ influx and downstream pro-inflammatory signaling. SUR2 is a novel host factor that regulates Helicobacter pathogenesis. Pharmacological targeting of SUR2 provides a potential approach for reducing the severity of H pylori-associated gastritis, without eradicating infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.