Abstract

Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain populations. However, the treatment of coinfection is a challenge because of the special considerations needed to ensure hepatic safety and avoid drug–drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV coinfection. However, the identification of one molecule that acts on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining Naïve Bayes (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints, MACCS and extended connectivity fingerprints 6 (ECFP6), 60 classification models were constructed to predict compounds that were active against 11 HIV-1 targets and four HCV targets based on a multiple quantitative structure–activity relationships (multiple QSAR) method. Five-fold cross-validation and test set validation were performed to measure the performance of the 60 classification models. Our results show that the 60 multiple QSAR models appeared to have high classification accuracy in terms of the area under the ROC curve (AUC) values, which ranged from 0.83 to 1 with a mean value of 0.97 for the HIV-1 models and from 0.84 to 1 with a mean value of 0.96 for the HCV models. Furthermore, the 60 models were used to comprehensively predict the potential targets of an additional 46 compounds, including 27 approved HIV-1 drugs, 10 approved HCV drugs and nine selected compounds known to be active against one or more targets of HIV-1 or HCV. Finally, 20 hits, including seven approved HIV-1 drugs, four approved HCV drugs, and nine other compounds, were predicted to be HIV/HCV coinfection multitarget inhibitors. The reported bioactivity data confirmed that seven out of nine compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. The remaining predicted hits and chemical-protein interaction pairs with the potential ability to suppress HIV/HCV coinfection are worthy of further experimental investigation. This investigation shows that the multiple QSAR method is useful in predicting chemical-protein interactions for the discovery of multitarget inhibitors and provides a unique strategy for the treatment of HIV/HCV coinfection.

Highlights

  • Human immunodeficiency virus type-1 (HIV-1) is the causative factor of acquired immunodeficiency syndrome (AIDS), a pandemic disease [1]

  • EIxnpethriims esnttuadl Dy,ataasteottAalnoalfys1i1s targets related to HIV-1 and four targets related to hepatitis C virus (HCV) were obtaiInnedthfirsomstutdhye, Tahteortaapl eoufti1c1TtaarrggeettsDraetlaabteadseto(TTHDIV) -[128a]ndanfdouCrhtEaMrgBetLs Drealatatebdaseto(vHeCrsVionwe2r3e, hotbttpasi:n//ewdwfrwo.mebit.hace.uTkh/cehraepmebult/i)c

  • In this study, based on the multiple quantitative structure-activity relationships (QSAR) method, 44 binary classifiers for 11 targets related to HIV-1 and 16 binary classifiers for four targets related to HCV were established to predict the chemical-protein interaction (CPI)

Read more

Summary

Introduction

Human immunodeficiency virus type-1 (HIV-1) is the causative factor of acquired immunodeficiency syndrome (AIDS), a pandemic disease [1]. HAART utilizes a cocktail of drugs to inhibit multiple viral proteins involved in the viral life cycle, including reverse transcriptase, integrase, and protease [6] It is effective, HAART requires the sequential administration of single-target drugs that may result in drug–drug interactions, poor treatment adherence and the emergence of drug resistance. As with the HARRT treatment regimen, additive drug toxicity, high cost and the long-term therapy cycle should be taken into account during HIV/HCV coinfection treatment. To avoid these undesirable factors, multitarget therapy using a single drug capable of simultaneously inhibiting two or more viral targets has been proposed to reduce the complexity of treatment [5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.