Abstract
The survival of malignant cells is constantly threatened by a myriad of cellular insults. In the context of such proteotoxic stress, cancer cells activate cytoprotective adaptive pathways. Heat shock proteins (HSPs) are highly conserved molecular chaperones that are expressed at low levels under normal conditions, but upregulated by cellular stress. As molecular chaperones, HSPs control the stability and function of client proteins, preventing aggregation of misfolded proteins, facilitating intracellular protein trafficking, maintaining protein conformation to enable ligand binding, phosphorylating proteins in signalling complexes and degrading severely damaged proteins via the ubiquitin-proteasome pathway. A key client protein of several HSPs is the androgen receptor (AR). HSPs facilitate binding of dihydrotestosterone to the AR, and enhance AR-mediated transcriptional activity. The integral role of HSPs in AR function speaks to their potential utility as therapeutic targets in castration-resistant prostate cancer (CRPC), a disease state characterized by persistent activation of the androgen-AR axis. Inhibition of HSPs has the additional benefit of potentially modulating signalling and transcriptional networks that are associated with HSP client proteins in CRPC cells. As a consequence, HSPs represent highly attractive targets in the development of treatments for CRPC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.