Abstract

Glutathione S-transferasepi(GSTP1), a phase II detoxification enzyme, is known to be overexpressed and mediates chemotherapeutic resistance in lung cancer. However, whether GSTP1 supports cancer stem cells (CSCs) and the underlying mechanisms in lung adenocarcinoma (LUAD) remain largely unknown. This studyunveiled that GSTP1 is upregulated in lung CSCs and supports tumor self-renewal, metastasis, and resistance to targeted tyrosine kinase inhibitors of LUAD both in vitro and in vivo. Mechanistically, CaMK2A (calcium/calmodulin-dependent protein kinase 2 isoform A)/NRF2 (nuclear factor erythroid 2-related factor 2)/GSTP1 is uncovered as a regulatory axis under hypoxia. CaMK2A increased GSTP1 expression through phosphorylating the Sersine558 residue of NRF2 and promoting its nuclear translocation, a novel mechanism for NRF2 activation apart from conventional oxidization-dependent activation. Upregulation of GSTP1 in turn suppressed reactive oxygen species levels and supported CSC phenotypes. Clinically, GSTP1 analyzed by immunohistochemistry is upregulated in a proportion of LUAD and serves as a prognostic marker for survival. Using patient-derived organoids from an ALK-translocated LUAD, the therapeutic potential of a specific GSTP1 inhibitor ezatiostat in combination treatment with the ALK inhibitor crizotinib is demonstrated. This study demonstrates GSTP1 to be a promising therapeutic target for long-term control of LUAD through targeting CSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call