Abstract

Uveal melanoma is a rare malignancy affecting 5.1 patients/million per year with definitive treatment options of enucleation or radiation therapy to the primary tumor. Unfortunately, no FDA-approved systemic therapies exist for patients in the adjuvant or metastatic setting. Molecular profiling over the past decade has helped define uveal melanomas by characteristic mutations: GNAQ, GNA11, BAP1, SF3B1, and EIF1AX mutations. GNAQ/11 mutations are present in over 90% of patients with uveal melanoma and lead to signal transduction through G-protein coupled receptors to downstream growth factors. PKC inhibition has been an active area of investigation targeting this pathway specific to uveal melanoma. Several molecules have been developed and evaluated in clinical trials. Responses have been noted but clinical development has also yielded multiple toxicities and pathways of resistance limiting both breadth and durability of responses leading to combination therapy approaches. PKC inhibition remains an active and encouraging area of research to determine effective therapies for patients with uveal melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.