Abstract

G protein-coupled inward rectifier K+ (GIRK) channels represent novel targets for the development of new therapeutic agents. GIRK channels are activated by a large number of G protein-coupled receptors (GPCRs) and regulate the electrical activity of neurons, cardiac myocytes, and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the patho-physiology of neuropathic pain, drug addiction, cardiac arrhythmias, and other disorders. However, the pharmacology of these channels remains largely unexplored. In this paper we describe the development of a screening assay for identifying new modulators of neuronal and cardiac GIRK channels. Pituitary (AtT20) and cardiac (HL-1) cell lines expressing GIRK channels were cultured in 96-well plates, loaded with oxonol membrane potential-sensitive dyes and measured using a fluorescent imaging plate reader. Activation of the endogenous GPCRs in the cells caused a rapid, time-dependent decrease in the fluorescent signal; indicative of K+ efflux through the GIRK channels (GPCR stimulation versus control, Z′-factor = 0.5–0.7). As expected this signal was inhibited by addition of Ba2+ and the GIRK channel toxin tertiapin-Q. To test the utility of the assay for screening GIRK channel blockers, cells were incubated for 5 min with a compound library of Na+ and K+ channel modulators. Ion transporter inhibitors such as 5-(N,N-hexamethylene)-amiloride and SCH-28080 were identified as blockers of the GIRK channel at sub-micromolar concentrations. Thus, the screening assay will be useful for expanding the limited pharmacology of the GIRK channel and in developing new agents for the treatment of GIRK channelopathies.

Highlights

  • G protein-coupled inward rectifier K+ (GIRK) channels function as cellular mediators of a wide range of hormones and neurotransmitters and are expressed in the brain, heart, skeletal muscle, and endocrine tissue (Hibino et al, 2010; Lusscher and Slesinger, 2010)

  • In this paper we describe the development of a screening assay for identifying new modulators of neuronal and cardiac GIRK channels

  • We previously demonstrated that the GIRK channel fluorescent assay could be utilized to study the pharmacology of the GIRK1/GIRK4 channel in cardiac HL-1 cells (Walsh, 2010)

Read more

Summary

Introduction

G protein-coupled inward rectifier K+ (GIRK) channels function as cellular mediators of a wide range of hormones and neurotransmitters and are expressed in the brain, heart, skeletal muscle, and endocrine tissue (Hibino et al, 2010; Lusscher and Slesinger, 2010). Four GIRK channel subunits are expressed in mammals: GIRK1 (Kir3.1), GIRK2 (Kir3.2), GIRK3 (Kir3.3), and GIRK4 (Kir3.4; Hibino et al, 2010; Lusscher and Slesinger, 2010). In the atrial myocardium and sinus and atrioventricular nodes of the heart, GIRK channels are composed of heteromers of GIRK1 and GIRK4 subunits (Hibino et al, 2010)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call