Abstract

RNA dependent RNA polymerases (RdRp) are essential enzymes for flavivirus replication. Starting from an in silico docking analysis we identified a pyridobenzothiazole compound, HeE1-2Tyr, able to inhibit West Nile and Dengue RdRps activity in vitro, which proved effective against different flaviviruses in cell culture. Crystallographic data show that HeE1-2Tyr binds between the fingers domain and the priming loop of Dengue virus RdRp (Site 1). Conversely, enzyme kinetics, binding studies and mutational analyses suggest that, during the catalytic cycle and assembly of the RdRp-RNA complex, HeE1-2Tyr might be hosted in a distinct binding site (Site 2). RdRp mutational studies, driven by in silico docking analysis, allowed us to locate the inhibition Site 2 in the thumb domain. Taken together, our results provide innovative concepts for optimization of a new class of anti-flavivirus compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.