Abstract

Melanoma is a serious health challenge. Ferroptosis is a regulated form of oxidative cell death that shows varied efficacy in melanoma. We aimed to better understand the molecular basis for this differential ferroptosis sensitivity. We find that elevated expression of ErbB3 (V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homologue 3) associates with ferroptosis resistance and that ErbB3 knockdown sensitizes to ferroptosis inducers. ErbB3 depletion also promotes a marked reduction in the cellular ratio of GSH/GSSG (reduced/oxidized glutathione) and that of NADPH/NADP+ (reduced/oxidized nicotinamide adenine dinucleotide phosphate), together with an increase in the abundance of the lipid peroxidation product malondialdehyde (MDA). We identify several small molecule inhibitors targeting ErbB3 signaling pathways that also reduce the NADPH/NADP+ and GSH/GSSG ratios, concomitantly sensitizing the melanomas to ferroptosis activators. These findings point to a previously unrecognized role of ErbB3 in ferroptosis sensitivity and provide new insight into pathways that regulate this cell death process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call