Abstract

After spinal cord injury (SCI), the disruption of blood-spinal cord barrier by activation of the endothelin (ET) system is a critical event leading to leukocyte infiltration, inflammatory response and oxidative stress, contributing to neurological disability. In the present study, we showed that blockade of ET receptor A (ETAR) and/or ET receptor B (ETBR) prevented early inflammatory responses directly via the inhibition of neutrophil and monocyte diapedesis and inflammatory mediator production following traumatic SCI in mice. Long-term neurological improvement, based on a series of tests of locomotor performance, occurred only in the spinal cord-injured mice following blockade of ETAR and ETBR. We also examined the post-traumatic changes of the microenvironment within the injured spinal cord of mice following blockade of ET receptors. Oxidative stress reflects an imbalance between malondialdehyde and superoxide dismutase in spinal cord-injured mice treated with vehicle, whereas blockade of ETAR and ETBR reversed the oxidation state imbalance. In addition, hemeoxygenase-1, a protective protease involved in early SCI, was increased in spinal cord-injured mice following the blockade of ETAR and ETBR, or only ETBR. Matrix metalloproteinase-9, a tissue-destructive protease involved in early damage, was decreased in the injured spinal cord of mice following blockade of ETAR, ETBR or a combination thereof. The findings of the present study therefore suggested an association between ETAR and ETBR in regulating early pathogenesis of SCI and determining the outcomes of long-term neurological recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call