Abstract

The use of small molecules that bind and stabilize G-quadruplex structures is emerging as a promising way to inhibit telomerase activity in tumor cells. In this paper, isothermal titration calorimetry (ITC) and 1H NMR studies have been conducted to examine the binding of distamycin A and its two carbamoyl derivatives (compounds 1 and 2) to the target [d(TGGGGT)]4 and d[AG3(T2AG3)3] quadruplexes from the Tetrahymena and human telomeres, respectively. The interactions were examined using two different buffered solutions containing either K+ or Na+ at a fixed ionic strength, to evaluate any influence of the ions present in solution on the binding behaviour. Experiments reveal that distamycin A and compound 1 bind the investigated quadruplexes in both solution conditions; conversely, compound 2 appears to have a poor affinity in any case. Moreover, these studies indicate that the presence of different cations in solution affects the stoichiometry and thermodynamics of the interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call