Abstract
Most insertions or deletions generated by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) endonucleases are short (<25 bp), but unpredictable on-target long DNA deletions (>500 bp) can be observed. The possibility of generating long on-target DNA deletions poses safety risks to somatic genome editing and makes the outcomes of genome editing less predictable. Methods for generating refined mutations are desirable but currently unavailable. Here, we show that fusing Escherichia coli DNA polymerase I or the Klenow fragment to Cas9 greatly increases the frequencies of 1-bp deletions and decreases >1-bp deletions or insertions. Importantly, doing so also greatly decreases the generation of long deletions, including those >2 kb. In addition, templated insertions (the insertion of the nucleotide 4 nt upstream of the protospacer adjacent motif) were increased relative to other insertions. Counteracting DNA resection was one of the mechanisms perturbing deletion sizes. Targeting DNA polymerase to double-strand breaks did not increase off-targets or base substitution rates around the cleavage sites, yet increased editing efficiency in primary cells. Our strategy makes it possible to generate refined DNA mutations for improved safety without sacrificing efficiency of genome editing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.