Abstract
The first actinide borosulfates, (UO2)[B(SO4)2(SO3OH)] (TSUBOS-1) and (UO2)2[B2O(SO4)3(SO3OH)2] (TSUBOB-1), were synthesized solvothermally in oleum using UO3. The classical borosulfate crystal structure of TSUBOS-1 is partially consistent with an established conventional hierarchy. Uranyl pentagonal bipyramids limit the anionic network linkages and isolate sulfate tetrahedra within the anionic network. Therefore, the classical one-dimensional chain established in the hierarchy does not fully describe the structure. The structure of TSUBOB-1 is the first actinide borosulfate that contains an unconventional borate-to-borate bridging mode (denoted B-O-B) and a zero-dimensional oxoanionic unit consisting of one sulfate tetrahedron that shares vertices with two B-O-B bridged borate tetrahedra that each share a vertex with two sulfate tetrahedra. As this structure departs from the existing structural hierarchy, a modified approach for understanding the unconventional borosulfate substructure and dimensionality is proposed, together with a new graphical notation. In the course of our synthesis experiments, a novel uranyl disulfate compound (UO2)2[(S2O7)(SO3OH)2] (TSUDS) was isolated and characterized. The structure of TSUDS is a framework consisting of uranyl pentagonal bipyramids and sulfate tetrahedra. Each uranyl pentagonal bipyramid is surrounded by five sulfate tetrahedra, two of which share a vertex creating a disulfate with a S-O-S bridging mode. The uranyl bipyramids are linked to one another via the singular sulfate or disulfate groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.