Abstract
Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ1 depletion leads to thyroid tumor cell death. We showed that siRNA-mediated COPZ1 depletion causes abortive autophagy, endoplasmic reticulum stress, unfolded protein response and apoptosis. Interestingly, we observed that mouse tumor xenografts, locally treated with siRNA targeting COPZ1, showed a significant reduction of tumor growth. On the whole, we demonstrated for the first time the crucial role of COPZ1 in the viability of thyroid tumor cells, suggesting that it may be considered an attractive target for novel therapeutic approaches for thyroid cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.