Abstract

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.

Highlights

  • Gliomas are the most common tumors of the central nervous system, accounting for 80% of malignant brain tumors

  • It has been recognized that the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is a very promising target for the development of novel anti-cancer therapies in human cancer, including GBM [44,45]

  • There exist several reports on the pre-clinical activity of Akt, PI3K, and mTOR inhibitors in GBM models, and several clinical trials have been initiated with these novel agents [11,44,45]

Read more

Summary

Introduction

Gliomas are the most common tumors of the central nervous system, accounting for 80% of malignant brain tumors. Glioblastoma (GBM) represents the largest and most malignant subgroup. GBMs are generally characterized by a highly heterogeneous and highly infiltrative phenotype. Standard treatment of care includes surgical resection, followed by radiation and/or chemotherapy [1]. Despite this aggressive treatment, almost all GBM eventually recur and the median survival of GBM patients is only around one year [2,3].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.