Abstract

Objective Acute coronary syndrome (ACS) is the most dangerous and deadly form of coronary heart disease. Herein, we aimed to explore ACS-specific circulating lncRNAs and their regulatory mechanisms. Methods This study collected serum samples from ACS patients and healthy controls for microarray analysis. Dysregulated circulating lncRNAs and mRNAs were determined with |log2fold − change| > 1 and p < 0.05. lncRNA-mRNA coexpression analysis was carried out. ENST00000538705.1 and ALOX15 expression was further verified in serum specimens. In human coronary artery endothelial cells (HCAECs), ENST00000538705.1 and ALOX15 were knocked out through transfecting specific siRNAs. Thereafter, proliferation and migration were investigated with CCK-8 and wound-healing assays. Myocardial infarction rat models were established and administrated with siRNAs against ENST00000538705.1 or ALOX15. Myocardial damage was investigated with H&E staining, and serum TC, LDL, and HDL levels were measured. Results Microarray analysis identified 353 dysregulated circulating lncRNAs and 441 dysregulated circulating mRNAs in ACS. Coexpression analysis indicated the interaction between ENST00000538705.1 and ALOX15. RT-qPCR confirmed the remarkable upregulation of circulating ENST00000538705.1 and ALOX15 in ACS patients. In HCAECs, ENST00000538705.1 knockdown lowered the expression of ALOX15 but ALOX15 did not alter the expression of ENST00000538705.1. Silencing ENST00000538705.1 or ALOX15 weakened the proliferation and migration of HCAECs. Additionally, knockdown of ENST00000538705.1 or ALOX15 relieved myocardial damage, decreased serum TC and LDL levels, and elevated HDL levels in myocardial infarction rats. Conclusion Collectively, our findings demonstrate that circulating ENST00000538705.1 facilitates ACS progression through modulating ALOX15, which provide potential targets for ACS treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.