Abstract

Ovarian cancer (OvCa) is currently the fifth most lethal malignancy affecting women health owing to the lack of early diagnosis and treatment choices available before the disease has progressed to a later stage. Paclitaxel (PTX) has shown substantial antineoplastic action against a variety of human cancers, including OvCa, for multiple decades. Despite this, the therapeutic use of this drug is not yet adequate owing to surfactant-related toxicities and off-target effects. In response to these constraints, nanoparticle carriers have evolved as delivery tools for the biocompatible and target delivery of PTX. In this work, a novel polymeric PTX formulation was developed for targeted therapy of OvCa cells, which was achieved by prodrug engineering and HA decoration strategies. Further studies indicated that HA-coated nanodrugs (HA-PLA-PTX NPs) could preferentially accumulate in the CD44-expressing SKOV3 cells, which induced elevated cytotoxicity, reduced cell proliferation, and increased cell apoptosis. In vivo study also demonstrated that equivalent doses of HA-PLA-PTX NPs surpassed the clinical PTX formulation Taxol in a SKOV3 xenograft tumor model. In conclusion, HA-PLA-PTX NPs might be a potentially feasible delivery system for effective OvCa treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call