Abstract

Highly active antiretroviral therapy (HAART) is the only approach for human immunodeficiency virus (HIV) infection treatment at present. Although HAART is effective in controlling the progression of infection, it is impossible to eradicate the virus from patients. The patients have to live with the virus. Alternative ways for the cure of HIV infection have been investigated. As the major co-receptor for HIV-1 infection, C-C motif chemokine receptor 5 (CCR5) is naturally an ideal target for anti-HIV research. The first CCR5 antagonist, maraviroc, has been approved for the treatment of HIV infection. Several other CCR5 antagonists are in clinical trials. CCR5 delta32 is a natural genotype, conferring resistance to CCR5 using HIV-1 strains. Gene therapy research targeting this mutant has been conducted for HIV infection treatment. A Berlin patient has been cured of HIV infection by the transplantation of stem cells from a CCR5 delta32 genotype donor. The infusion of an engineered zinc finger nuclease (ZFN)-modified autologous cluster of differentiation 4 (CD4) T cells has been proved to be a promising direction recently. In this study, the anti-HIV research targeting CCR5 is summarized, including CCR5 antagonist development, stem cell transplantation, and gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.