Abstract

Caspase 8 is a central player in the apoptotic cell death pathway and is also essential for cytokine processing. The critical role of this protease in cell death pathways has generated research interest because its activation has also been linked with neural cell death. Thus, blocking the activity of caspase 8 is considered a potential therapy for neurodegenerative diseases. To extend the repertoire of caspase 8 inhibitors, we employed several computational approaches to identify potential caspase 8 inhibitors. Based on the structural information of reported inhibitors, we designed several individual and consensus pharmacophore models and then screened the ZINC database, which contains 105,480 compounds. Screening generated 5332 candidates, but after applying stringent criteria only two candidate compounds, ZINC19370490 and ZINC04534268, were evaluated by molecular dynamics simulations and subjected to Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) analysis. These compounds were stable throughout simulations and interacted with targeted protein by forming hydrogen and van der Waal bonds. MM-PBSA analysis showed that these compounds were comparable or better than reported caspase 8 inhibitors. Furthermore, their physical properties were found to be acceptable, and they are non-toxic according to the ADMET online server. We suggest that the inhibitory efficacies of ZINC19370490 and ZINC04534268 be subjected to experimental validation.

Highlights

  • Neurological disorders (NDs) are usually due to structural and/or functional losses of neurons and eventually neuronal death [1]

  • Neuronal death is the main characteristic of major NDs, and apoptosis is considered a possible mechanism of neuronal death in the majority of NDs [3]

  • The genes that crucially contribute to Alzheimer’s disease (AD) (β-amyloid precursor protein (APP), and presenilin-1 and -2) have been demonstrated to regulate apoptosis, which intimates dysregulation of apoptosis plays a notable role in triggering the neuronal loss in AD [6]

Read more

Summary

Introduction

Neurological disorders (NDs) are usually due to structural and/or functional losses of neurons and eventually neuronal death [1]. Molecules 2019, 24, 1827 as memory loss and the aggregation of abnormal proteins [2]. Neuronal death is the main characteristic of major NDs, and apoptosis is considered a possible mechanism of neuronal death in the majority of NDs [3]. Abnormal or excessive neuron apoptosis eventually lead to a number of incurable diseases including AD, PD, Huntington’s disease (HD), and stroke [4,5]. The genes that crucially contribute to AD (β-amyloid precursor protein (APP), and presenilin-1 and -2) have been demonstrated to regulate apoptosis, which intimates dysregulation of apoptosis plays a notable role in triggering the neuronal loss in AD [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call