Abstract

BackgroundRecent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf – MEK – ERK signalling pathway, followed by metastasis. PDE8A has been shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase.MethodsWe have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A – C-Raf complex in a human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP kinase signalling.ResultsWe have demonstrated that the PDE8A – C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-S259 phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008 to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue and significantly reduced phospho-ERK signalling in that domain.ConclusionOur data suggests that the PDE8A-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor resistant melanoma.

Highlights

  • Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease

  • To determine if PPL-008 conjugates (10 μM) could suppress phospho-Mitogen-activated protein kinase (ERK) signalling in MM415 cells, pERK levels were determined via western blot

  • PERK was significantly reduced in the human A375 malignant melanoma cell line (BRAF V600E) following PLX treatment (1 μM) (Fig. 1b, lanes 2,3,4) with PPL-008 analogues providing no ERK inhibition as a mono-treatment (Fig. 1b, lanes 11–14 inclusive) or further ERK inhibition as a co-treatment with PLX (Fig. 1b, lanes 7–10 inclusive)

Read more

Summary

Introduction

Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. An un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf – MEK – ERK signalling pathway, followed by metastasis. Peptide mapping of the PDE8A-C-Raf interface allowed for the rational development of a cell penetrating peptide disrupter based on the C-Raf binding site on PDE8A [22, 23] This disrupter was found to inhibit the PDE8A – C-Raf protein-protein interaction (PPI) and significantly increase C-Raf-S259 phosphorylation while concomitantly supressing phospho-ERK signalling. This concept was verified at an organismal level in both PDE8A knock out mice and a drosophila model, where basal ERK activation was attenuated compared to wild type [20]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call