Abstract

BackgroundRecent studies have demonstrated that aberrant expression or activation of kinases results in oncogenesis of a wide range of cancers including GBM. Inhibition of kinases expression induces a reduction of therapy resistance. In this study, we investigate the underlying mechanism by which glioblastoma (GBM) cells acquire resistance to Temozolomide (TMZ) through Aurora kinase B (AURKB) thus to identify novel therapeutic targets and prognostic biomarkers for GBM. MethodsAURKB was identified as a key candidate kinase-encoding gene in chemoresistance regulation by using kinome-wide bioinformatic analysis. Afterwards, the potential biological functions of AURKB in oncogenesis and chemoresistance were investigated by lentivirus-dependent silencing of AURKB combined with qRT-PCR, western blot and in vivo intra-cranial xenograft mice models. Additionally, immunohistochemistry (IHC) assays were performed to explore the clinical significance of AURKB in glioma patients. Lastly, Chou-Talalay method was used to confirm the synergistic effect of TMZ combined with AURKB inhibitor. ResultsAURKB was among the most significantly up-regulated kinase-coding genes in TMZ resistant GBM cells according to database GSE68029, moreover, an increased expression of AURKB was closely associated with poor prognosis in glioma and GBM patients. AURKB knock-down resensitized U87 resistant cells to TMZ both in vitro and in vivo. Additionally, the combination of TMZ and Hesperadin, a specific AURKB inhibitor, significantly suppressed the proliferation of TMZ resistant GBM cells thus dramatically prolonged the survival of xenograft mice viaa synergistic effect with TMZ. ConclusionElevated AURKB expression was strongly correlated to TMZ resistant acquisition and poor prognosis, furthermore, targeting AURKB would be a potential therapeutic target for GBM patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.