Abstract

Androgen Receptor (AR) is overexpressed in almost all the molecular subtypes of breast cancer. Besides aiding the tumorigenic environment of cancer by abnormal cell proliferation, AR also takes part in promoting cancer signaling pathways, thereby promoting aggressiveness. In this study, AR was selected as the target protein in breast cancer cells. Following this, a library of 1293 FDA-approved drugs was screened via molecular docking, MD simulation, and MMPBSA binding energy. Amongst the library of compounds, Adapalene exhibited the least binding energy of (−10.2 kCal/mol) in comparison to that of the chosen reference compound, Nilutamide (−8.6 kCal/mol). Furthermore, the in vitro efficacy of Adapalene was also determined in two different breast cancer cell lines such as MCF7 (AR-positive/ER-positive) and MDA-MB-231 (AR negative/TNBC). Initially, the cell viability assay (MTT) was performed, which endowed us with a lesser IC50 value of Adapalene in comparison to Nilutamide in both cell lines. The IC50 of Adapalene was found to be 12 μM and 39.4 μM in MCF7 and MDA-MB-231 cells, respectively. Furthermore, Adapalene also induced cellular ROS and apoptosis by 3.5-fold and 26.58% in MCF7 cells. However, the overall effect of Adapalene was significantly lower in the case of MDA-MB-231 cell lines, which could be attributed to its inherent nature of the absence of hormone receptors. Conclusively, Adapalene possesses greater therapeutic efficacy in comparison to the control drug, thereby hinting towards the potential use of Adapalene in the treatment of AR-positive breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call