Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD). However, its mechanisms remain unclear. VC, similar to atherosclerosis, is an inflammatory disease. Vascular smooth muscle cells (VSMCs) play a key role in VC progression. The androgen receptor (AR) in monocytes/macrophages plays an important role in inflammatory diseases. Here, we define the role of macrophage (MФ) AR in inorganic phosphate-induced VSMC calcification. Our results show that the conditioning medium (CM) of silencing AR in macrophages inhibits inorganic phosphate-induced human aortic smooth muscle cell (HASMC) calcification, and alleviates the transdifferentiation of HASMCs into osteoblasts for the protein expression of osteoblasts marker Runt-related transcription factor-2 (Runx2) in HASMCs decreased while that of smooth muscle cell marker SM22α increased. The effect of AR on HASMC calcification might mainly be mediated by the inflammatory cytokine IL-6. Silencing AR in monocytes/macrophages can dramatically decrease IL-6 expression. We also investigated how macrophage AR regulates IL-6. ChIP and luciferase assays indicate that AR directly binds to the ARE sequence in the promoter of the IL-6 gene to accelerate transcription and expression. To our knowledge, this is the first investigation that has established the correlation between AR and VC and identified the contribution of AR in the calcification of VSMCs. In addition, this study describes a novel target for therapeutic intervention in VC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.