Abstract

The development of cell-like nanoreactors with the ability to initiate biocatalytic cascades under special conditions holds tremendous potential for therapeutic applications. Herein, conformationally gated nanoreactors that respond to the acidic microenvironment of infected diabetic wounds were developed by cucur[8]bituril (CB[8])-based supramolecular assembly. The bioinspired nanoreactors exhibit not only self-regulated permeability and selectivity to control internal enzyme activities by substance exchange but also distinct binding specificities toward Gram-positive and Gram-negative bacteria via noncovalent modification with different ligands. The encapsulation of glucose oxidase (GOx), Fe3O4 nanozyme, and l-arginine (l-Arg) into the nanocarriers enables intelligent activation of multienzyme cascade reactions upon glucose (Glu) uptake to produce gluconic acid (GA) and hydrogen peroxide (H2O2), which is further converted into highly toxic hydroxyl radicals (·OH) for selective antibacterial activity. Moreover, acidic H2O2 promotes the oxidization of l-Arg, leading to the release of nitric oxide (NO). Consequently, this nanoreactor provides a multifunctional and synergistic platform for diabetic chronic wound healing by combining enzyme dynamic therapy with NO gas therapy to combat bacterial infections and inflammation under high blood Glu levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.