Abstract

The regeneration of structurally/functionally competent tooth root cementum is a critical step for the successful restoration of periodontal attachment. In this study, we tested whether a poly-glutamic acid-rich domain and glutamine-containing transglutaminase substrate can be used to target biologically active peptides to the mineralized root matrix and to bind such peptides covalently to the organic matrix. As a biologically active model molecule, the integrin-binding motif, RGD, was used. The effects of immobilization of such synthetic peptides to the dentin matrix on cementoblastic adhesion in vitro and cementogenesis in vivo were studied. In vitro, cementoblastic adhesion improved significantly when the dentin surface contained covalently bound peptides. In vivo, this bound peptide significantly increased cementum formation compared with that attained in control conditions. Transglutaminase-catalyzed covalent binding of bioactive peptides targeted to mineralized collagenous dentin matrix via the poly-glutamate domain can be readily achieved. This approach offers potential for clinical use in periodontal regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.