Abstract

Whereas treatment of allergic diseases such as asthma relies largely on the targeting of dysregulated effector pathways, the conceptually attractive alternative of preventing them by a pharmaceutical, at-source intervention has been stymied until now by uncertainties about suitable targets and the challenges facing drug design. House dust mites (HDMs) are globally significant triggers of allergy. Group 1 HDM allergens, exemplified by Der p 1, are cysteine proteases. Their degradome has a strong disease linkage that underlies their status as risk and initiator allergens acting directly and through bystander effects on other allergens. Our objective was to test whether target-selective inhibitors of group 1 HDM allergens might provide a viable route to novel therapies. Using structure-directed design to optimize a series of pyruvamides, we undertook the first examination of whether pharmaceutically developable inhibitors of group 1 allergens might offer protection against HDM exposure. Developability criteria included durable inhibition of clinically relevant signals after a single aerosolized dose of the drug. The compounds suppressed acute airway responses of rats and mice when challenged with an HDM extract representing the HDM allergome. Inhibitory effects operated through a miscellany of downstream pathways involving, among others, IL-33, thymic stromal lymphopoietin, chemokines, and dendritic cells. IL-13 and eosinophil recruitment, indices of Th2 pathway activation, were strongly attenuated. The surprisingly expansive benefits arising from a unique at-source intervention suggest a novel approach to multiple allergic diseases in which HDMs play prominent roles and encourage exploration of these pharmaceutically developable molecules in a clinical setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.