Abstract

A growing body of evidence suggests that macrophage immune checkpoint molecules are potential targets in the era of cancer immunotherapy. Here we showed that extracellular adenosine, an abundant metabolite in the tumor microenvironment, critically impedes the therapeutic efficacy of anti-CD20 monoclonal antibodies (mAbs) against B-cell lymphoma. Using a syngeneic B-cell lymphoma model, we showed that host deficiency of adenosine 2A receptor (A2AR), but not A2BR, remarkably improved lymphoma control by anti-CD20 mAb therapy. Conditional deletion of A2AR in myeloid cells, and to a lesser extent in NK cells, augmented therapeutic efficacy of anti-CD20 mAb. Indeed, adenosine signaling impaired antibody-mediated cellular phagocytosis (ADCP) by macrophages and limited the generation of anti-lymphoma CD8+ T cells. Pharmacological inhibition of A2AR overcame the adenosine-mediated negative regulation of ADCP by rituximab in a xeno-transplanted lymphoma model. Moreover, aberrant overexpression of CD39, an apical ecto-enzyme for adenosine generation, showed a negative impact on prognosis in patients with diffuse large B-cell lymphoma, as well as on preclinical efficacy of rituximab. Together, adenosine acts as a "don't eat me signal", and may be a potential target to harness anti-lymphoma immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call