Abstract

Glioblastoma multiforme (GBM) is the most common, aggressive, and chemorefractory brain tumor in human adults. Notwithstanding significant discoveries in the elucidation of pathways of molecular signaling and genetics of GBM during the past 20 years there has been no breakthrough in the pharmacological treatment of this high-grade malignancy. We, and others, have previously demonstrated increased expression of βIII-tubulin in GBM asserting a link between aberrant expression of this β-tubulin isotype and a disruption of microtubule dynamics associated either with malignant tumor development de novo, or with progression and malignant transformation of a low-grade glioma into GBM. This article reviews βIII-tubulin as a promising target in the experimental treatment of GBM and examines the potential use of epothilones, a new family of anticancer agents shown to be active in βIII-tubulin-expressing tumor cells, as well as the "double hit" therapeutic concept of tumor cell sensitization to tubulin binding agents (TBAs) by βIII-tubulin silencing. The latest progress regarding the function and potential role of βIII-tubulin in aggressive tumor behavior, cancer stem cells, tumor cell hypoxia, and resistance to taxane-related compounds, is also critically appraised.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.