Abstract

Hypoxia contributes to acquired drug resistance in various cancer cells. The underlying mechanism is cellular insensitivity regulated by hypoxia-inducible factors (HIF), which impairs drug uptake, transport, and metabolism. The current study determines anti-RON antibody-directed cytotoxicity of doxorubicin (Dox)-immunoliposomes (IL) in hypoxic colon cancer cells. Cells were cultured under hypoxia (1% O(2), 5% CO(2), and 96% N(2)) for 24 h. Dox-loaded IL were formulated followed by post-insertion of monoclonal antibody Zt/g4 specific to RON. Western blotting was used to detect HIF-1α and RON expression. Cellular uptake of Zt/g4-conjugated IL was determined by confocal and internalization assays. Cell viability was assessed by the MTT assay. RON and HIF-1α expression were observed in hypoxic colon HCT116 and SW620 cells. Resistance to Dox-induced cytotoxicity was acquired in hypoxic cells with increased IC(50) values. However, acquired resistance was attenuated by Zt/g4-directed Dox-IL, which displays increased cytotoxic activities. IL binding and uptake revealed that hypoxic RON expression is functional, which mediates high levels of Zt/g4-Dox-IL binding and cytoplasmic internalization. Zt/g4-Dox-IL is effective in killing hypoxic HCT116 and SW620 cells with reduced IC(50) values compared to Dox and pegylated-liposomal Dox. These effects were dependent on hypoxic RON expression. HCC1937 cells with diminished RON expression under hypoxia were insensitive to Zt/g4-Dox-IL-induced cytotoxic effect. RON expressed by hypoxic colon cancer cells is thus a potential targeting molecule for delivery of chemotherapeutics. The ability of anti-RON mAb to direct Dox-IL cytotoxicity could be developed for attenuating hypoxia-acquired drug resistance in various cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call