Abstract

Genetic tools for specific perturbation of endogenous gene expression are highly desirable for interrogation of plant gene functions and improvement of crop traits. Synthetic transcriptional activators derived from the CRISPR/Cas9 system are emerging as powerful new tools for activating the endogenous expression of genes of interest in plants. These synthetic constructs, generated by tethering transcriptional activation domains to a nuclease-dead Cas9 (dCas9), can be directed to the promoters of endogenous target genes by single guide RNAs (sgRNAs) to activate transcription. Here, we provide a detailed protocol for targeted transcriptional activation in plants using a recently developed, highly potent dCas9 gene activator construct referred to as dCas9-TV. This protocol covers selection of sgRNA targets, construction of sgRNA expression cassettes, and screening for an optimal sgRNA using a protoplast-based promoter-luciferase assay. Finally, the dCas9-TV gene activator coupled with the optimal sgRNA is delivered into plants via Agrobacterium-mediated transformation, thereby enabling robust upregulation of target gene expression in transgenic Arabidopsis and rice plants. © 2019 by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.