Abstract
Parathyroid carcinoma (PC) is an ultra-rare malignancy with a high risk of recurrence after surgery. Tumour-directed systemic treatments for PC are not established. We used whole-genome and RNA sequencing in four patients with advanced PC to identify molecular alterations that could guide clinical management. In two cases, the genomic and transcriptomic profiles provided targets for experimental therapies that resulted in biochemical response and prolonged disease stabilization: (a) immune checkpoint inhibition with pembrolizumab based on high tumour mutational burden and a single-base substitution signature associated with APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) overactivation; (b) multi-receptor tyrosine kinase inhibition with lenvatinib due to overexpression of FGFR1 (Fibroblast Growth Factor Receptor 1) and RET (Ret Proto-Oncogene) and, (c)later in the course of the disease, PARP (Poly(ADP-Ribose) Polymerase) inhibition with olaparib prompted by signs of defective homologous recombination DNA repair. In addition, our data provided new insights into the molecular landscape of PC with respect to the genome-wide footprints of specific mutational processes and pathogenic germline alterations. These data underscore the potential of comprehensive molecular analyses to improve care for patients with ultra-rare cancers based on insight into disease biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.