Abstract

BackgroundCancer is a popular disease among many others that can threaten human life. This is not only because of its invasiveness but also because of its resistance and the highly effective cost of its treatments. Propolis is rich in natural bioactive and polyphenolic compounds that have proven their strong effect on cancer cells such as MCF-7 and A549 cell lines. MethodsPropolis extract was immobilized into the bovine serum albumin (BSA) conjugated to folic acid (FA), to increase control of its delivery and to strengthen its cellular uptake. ResultsThe growth of MCF-7 was significantly decreased by propolis extract and BSA-propolis NPs after their incubation for 48 and 72 h by (54 ± 0.01 %, and 45 ± 0.005 %, P ≤ 0.001) and (20 ± 0.01 % and 10 ± 0.005 %, P ≤ 0.0001), respectively. Similarly, there is a significant inhibition in the growth of A549 obtained after their incubation with (propolis extract and albumin-propolis NPs) for 72 h (15 ± 0.03 % and 5 ± 0.01 %, P ≤ 0.00001). Propolis extract and BSA-propolis NPs exhibited a greater effect on protein expression of MCF-7 and A549, showing significant modulation of caspase-3, cyclin D1, and light chain 3 (LC3II). The result was supported by nuclear fragmentations and activation of acidic/neutral autophagosomes in acridine orange/ethidium bromide (AO/EB) and 4′,6-diamidino-2-phenylindole (DAPI) nuclear stains. According to this study, the expression of phospho-GSK3β (Ser9) (p < 0.001) increased significantly in MCF-7 and A549 cells after their exposure to propolis extract and BSA-propolis NPs. ConclusionResults support the potency application of propolis and its encapsulation as an alternative therapeutic agent for cancer treatments instead of chemotherapies because of its action on multi-signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call