Abstract

Metastasis, a deadly feature of cancer, compromises the prognosis and accounts for mortality in the majority of cancer patients. SOX2, a well-known pluripotency transcription factor, plays a central role in cell fate determination and has an overlapping role as a regulatory factor in tumorigenesis and metastasis. The demand is increasing for clinically useful strategies for artificial control of SOX2 expression and its complex transcription machinery in cancer cells. N-Methylpyrrole (Py) and N-methylimidazole (Im) polyamides are small programmable designer ligands that can be pre-programmed to selectively recognize DNA sequence and control endogenous gene expression. Herein, we evaluated the anticancer activity of a designer ligand (SOX2i). SOX2i remarkably altered the expression of SOX2 at the mRNA and protein level in human cancer cell lines such as SW620 (colorectal adenocarcinoma), MKN45 (gastric adenocarcinoma), MCF7 (breast carcinoma), U2OS (osteosarcoma) and other cancer cell lines of different origin and type. Genome-wide transcriptome analysis and cell-based assays showed SOX2 to be a downregulated upstream regulator that alters cell proliferation, cell cycle progression, metabolism and apoptotic pathway. Studies in the mouse model confirmed the anti-metastatic property of SOX2i. SOX2i inhibited the expression of genes associated with EMT and stemness. Moreover, Wnt-canonical signaling was found to be downregulated in the SOX2i-treated group. Our proof-of-concept study supports the potential of DNA-based programmable small molecules for controlling the key regulatory factors associated with tumorigenesis and metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.