Abstract

Pharmacological stimulation of the vagus nerve has been shown to suppress inflammation and reduce blood pressure in a murine model of systemic lupus erythematosus (SLE) that is characterized by hypertension, inflammation, renal injury and dysautonomia. The present study aims to directly stimulate vagal nerves at the level of the dorsal motor nucleus of the vagus (DMV) using designer receptors exclusively activated by designer drugs (DREADDs) to determine if there is similar protection and confirm mechanism. Female NZBWF1/J (SLE) mice and NZW/LacJ mice (controls, labeled as NZW throughout) received bilateral microinjections of pAAV-hSyn-hM3D(Gq)-mCherry or control virus into the DMV at 31 weeks of age. After two weeks of recovery and viral transfection, the DREADD agonist clozapine-N-oxide (CNO; 3 mg/kg) was injected subcutaneously for an additional 14 days. At 35 weeks, mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to NZW mice, but selective activation of DMV neurons did not significantly alter MAP in either group. SLE mice had higher indices of renal injury including albumin excretion rate (μg/day), glomerulosclerosis index, interstitial fibrosis, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) compared to NZW mice. Selective DMV neuronal activation reduced albumin excretion rate, glomerulosclerosis, interstitial fibrosis, and NGAL in SLE mice but not NZW mice. Together, these data indicate that selective activation of neurons within the DMV by DREADD protects the kidney suggesting an important role of vagus-mediated pathways in the progression of renal injury in SLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call