Abstract
Catalytic reactions are known to be significantly affected by spin states and their variations during reaction processes, yet the mechanisms behind them remain not fully understood, thus preventing the rational optimization of catalysis. Here, we explore the relationship between the spin states of active sites and their catalytic performance, taking the oxygen reduction reaction as an example. We demonstrate that the catalytic performance is spin-state-dependent and can be improved by adjusting spin states during the catalytic process. To this end, we further investigate the possibility of altering the spin states of transition metals through the application of external fields, such as adsorbed species. By studying the influence of the strength of adsorbed ligands on spin states and its impact on catalytic performance, our results show that optimal catalytic performance is achieved when the strength of the external field is neither too strong nor too weak, forming a volcano-like relationship between the catalytic performance and the external field strength. Our findings can have far-reaching implications for the rational design of high-performance catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.