Abstract

The sequence-specific gene-silencing ability of small interfering RNA (siRNA) has been exploited as a new therapeutic approach for the treatment of a variety of diseases. However, efficient and safe delivery of siRNA into target cells is still a challenge in the clinical development of siRNA-based therapeutics. Recently, nucleic acid-based aptamers that target cell surface proteins have emerged as a new class of targeting moieties due to their high specificity and avidity. To date, various aptamer-mediated siRNA delivery systems have been developed to enhance the RNA interference (RNAi) efficacy of siRNA via targeted delivery. In this review, we summarize recent advances in developing aptamer-mediated siRNA delivery systems for RNAi therapeutics, mainly aptamer-siRNA chimeras and aptamer-functionalized nanocarriers incorporating siRNA, with a focus on their molecular designs and formulations. In addition, the challenges and engineering strategies of aptamer-mediated siRNA delivery systems for clinical translation are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call