Abstract

This study aims to determine the specificity of anti-human epidermal growth factor receptor antibody (anti-HER2) modified monomethoxy polyethylene glycol-chitosan (mPEG-CS) nanoparticles (anti-HER2/mPEG-CS NPs) in delivering small interfering RNA (siRNA) to the human epidermal growth factor receptor 2 (HER2) positive cancer cells. Physicochemical properties of the siRNA-loaded anti-HER2/mPEG-CS NPs (anti-HER2/mPEG-CS-siRNA NPs), including size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by particle size and zeta potential analyzer, and ultraviolet–visible spectrophotometer. MTT assay was used to study the in vitro cytotoxicity of the NPs. Fluorescent microscope and flow cytometer analysis results showed that anti-HER2/mPEG-CS-siRNA NPs had much efficient delivery of siRNA than the siRNA alone, Lipofectamine-siRNA complexes and mPEG-CS-siRNA NPs. These results demonstrated that anti-HER2/mPEG-CS-siRNA NPs had great potential applications as a targeted strategy for siRNA delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.