Abstract

Adoption of automated monitoring devices (AMD) affords the opportunity to tailor reproductive management according to the cow's needs. We hypothesized that a targeted reproductive management (TRM) would reduce the use of reproductive hormones while increasing the percentage of cows pregnant 305 d in milk (DIM). Holstein cows from 2 herds (n = 1,930) were fitted with an AMD at 251.0 ± 0.4 d of gestation. Early-postpartum estrus characteristics (EPEC; intense estrus = heat index ≥70; 0 = minimum, 100 = maximum) of multiparous cows were evaluated at 40 (herd 1) or 41 (herd 2) DIM and EPEC of primiparous cows were evaluated at 54 (herd 1) or 55 (herd 2) DIM. Control cows received the first artificial insemination at fixed time (TAI; primiparous, herd 1 = 82 and herd 2 = 83 DIM; multiparous, herd 1 = 68 and herd 2 = 69 DIM) following the Double-Ovsynch (DOV) protocol. Cows enrolled in the TRM treatment were managed as follows: (1) cows with at least one intense estrus were inseminated upon AMD detected estrus for 42 d and, if not inseminated, were enrolled in the DOV protocol; and (2) cows without an intense estrus were enrolled in the DOV protocol at the same time as cows in the control treatment. Control cows were re-inseminated based on visual or patch aided detection of estrus, whereas TRM cows were re-inseminated as described for control cows with the aid of the AMD. Cows received a GnRH injection 27 ± 3 d after insemination and, if diagnosed as nonpregnant, completed the 5-d Cosynch protocol and received TAI 35 ± 3 d after insemination. Among cows in the TRM treatment, 55.8 and 42.9% of primiparous and multiparous cows, respectively, received the first insemination in spontaneous estrus. The interaction between treatment and parity affected pregnancy 67 d after the first AI (primiparous: control = 37.6%, TRM = 27.4%; multiparous: control = 41.0%, TRM = 44.7%). The TRM treatment increased re-insemination in estrus (control = 48.3%, TRM = 70.5%). Pregnancy 67 d after re-inseminations tended to be affected by the interaction between treatment and EPEC (no intense estrus: control = 25.3%, TRM = 32.0%; intense estrus: control = 32.9%, TRM = 32.2%). The interaction between treatment and EPEC affected pregnancy by 305 DIM (no intense estrus: control = 80.8%, TRM = 88.2%; intense estrus: control = 87.1%, TRM = 86.1%). Treatment did not affect the number of reproductive hormone treatments among cows that had not had an intense estrus (control = 10.5 ± 0.3, TRM = 9.1 ± 0.2 treatments/cow), but cows in the TRM treatment that had an intense estrus received fewer reproductive hormone treatments than cows in the control treatment (2.0 ± 0.1 vs. 9.6 ± 0.2 treatments/cow). Selecting multiparous cows for first AI in estrus based on EPEC reduced the use of reproductive hormones without impairing the likelihood of pregnancy to first AI. The use of AMD for re-insemination expedited the establishment of pregnancy among cows that did not display an intense estrus early postpartum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call