Abstract
Two general phenotypes of heart failure (HF) are recognized: HF with reduced ejection fraction (HFrEF) and with preserved EF (HFpEF). To develop HF disease phenotype-specific approaches to define and guide treatment, distinguishing biomarkers are needed. The goal of this study was to utilize quantitative metabolomics on a large, diverse population to replicate and extend existing knowledge of the plasma metabolic signatures in human HF. Quantitative, targeted LC/MS plasma metabolomics was conducted on 787 samples collected by the Penn Medicine BioBank from subjects with HFrEF (n=219), HFpEF (n=357), and matched non-failing Controls (n=211). A total of 90 metabolites were analyzed, comprising 28 amino acids, 8 organic acids, and 54 acylcarnitines. 733 of these samples were also processed via an OLINK protein panel for proteomic profiling. Consistent with previous studies, unsaturated forms of medium/long chain acylcarnitines were elevated in the HFrEF group to a greater extent than the HFpEF group compared to Controls. A number of amino acid derivatives, including 1- and 3-methylhistidine, homocitrulline, and symmetric (SDMA) and asymmetric (ADMA) dimethylarginine were elevated in HF, with ADMA elevated uniquely in HFpEF. Plasma branched-chain amino acids (BCAA) were not different across the groups; however, short-chain acylcarnitine species indicative of BCAA catabolism were significantly elevated in both HF groups. The ketone body 3-hydroxybutyrate (3-HBA) and its metabolite C4-OH carnitine were uniquely elevated in the HFrEF group. Linear regression models demonstrated a significant correlation between plasma 3-HBA and NT-proBNP in both forms of HF, stronger in HFrEF. These results identify plasma signatures that are shared as well as potentially distinguish between HFrEF and HFpEF. Metabolite markers for ketogenic metabolic reprogramming in extra-cardiac tissues were identified as unique signatures in the HFrEF group, possibly related to the lipolytic action of increased levels of BNP. Future studies will be necessary to further validate these metabolites as HF biosignatures that may guide phenotype-specific therapeutics and provide insight into the systemic metabolic responses to HFpEF and HFrEF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.