Abstract

BackgroundN-1-(Deoxyfructosyl) valine (DFV) β-hemoglobin (β-Hb), commonly referred as HbA1c, is widely used diagnostic marker in diabetes, believed to provide glycemic status of preceding 90–120 days. However, the turnover of hemoglobin is about 120 days, the DFV-β-Hb, an early and reversible glycation product eventually may undergo irreversible advanced glycation modifications such as carboxymethylation or carboxyethylation. Hence quantification of N-1-(carboxymethyl) valine (CMV) and N-1-(carboxyethyl) valine (CEV) peptides of β-Hb would be useful in assessing actual glycemic status.ResultsFragment ion library for synthetically glycated peptides of hemoglobin was generated by using high resolution–accurate mass spectrometry (HR/AM). Using parallel reaction monitoring, deoxyfructosylated, carboxymethylated and carboxyethylated peptides of hemoglobin were quantified in clinical samples from healthy control, pre-diabetes, diabetes and poorly controlled diabetes. For the first time, we report N-1-β-valine undergoes carboxyethylation and mass spectrometric quantification of CMV and CEV peptides of β-hemoglobin. Carboxymethylation was found to be the most abundant modification of N-1-β-valine. Both CMV-β-Hb and CEV-β-Hb peptides showed better correlation with severity of diabetes in terms of fasting glucose, postprandial glucose and microalbuminuria.ConclusionsThis study reports carboxymethylation as a predominant modification of N-1-β-valine of Hb, and quantification of CMV-β-Hb and CEV-β-Hb could be useful parameter for assessing the severity of diabetes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12014-016-9108-y) contains supplementary material, which is available to authorized users.

Highlights

  • ResultsFragment ion library for synthetically glycated peptides of hemoglobin was generated by using high resolution–accurate mass spectrometry (HR/AM)

  • N-1-(Deoxyfructosyl) valine (DFV) β-hemoglobin (β-Hb), commonly referred as glycated hemoglobin (HbA1c), is widely used diagnostic marker in diabetes, believed to provide glycemic status of preceding 90–120 days

  • HbA1c is chemically N-1-(deoxyfructosyl) valine (DFV) β-hemoglobin, an early and reversible glycated product formed by non-enzymatic reaction with glucose, can possibly undergo relatively stable advanced glycation modifications such as CMV and CEV during the lifespan of erythrocytes

Read more

Summary

Results

Fragment ion library for synthetically glycated peptides of hemoglobin was generated by using high resolution–accurate mass spectrometry (HR/AM). Using parallel reaction monitoring, deoxyfructosylated, carboxymethylated and carboxyethylated peptides of hemoglobin were quantified in clinical samples from healthy control, pre-diabetes, diabetes and poorly controlled diabetes. We report N-1-β-valine undergoes carboxyethylation and mass spectrometric quantification of CMV and CEV peptides of β-hemoglobin. Carboxymethylation was found to be the most abundant modification of N-1-β-valine. Both CMV-β-Hb and CEV-β-Hb peptides showed better correlation with severity of diabetes in terms of fasting glucose, postprandial glucose and microalbuminuria

Conclusions
Background
Methods
Results and discussion
18 V 1 and K 8
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.