Abstract
Stable regulation of protein fate is a prerequisite for successful bone tissue repair. As a ubiquitin-specific protease (USP), USP26 can stabilize the protein fate of β-catenin to promote the osteogenic activity of mesenchymal cells (BMSCs) and significantly increased bone regeneration in bone defects in aged mice. However, direct transfection of Usp26 in vivo is inefficient. Therefore, improving the efficient expression of USP26 in target cells is the key to promoting bone tissue repair. Herein, 3D printing combined with microfluidic technology is applied to construct a functional microunit (protein fate regulating functional microunit, denoted as PFFM), which includes GelMA microspheres loaded with BMSCs overexpressing Usp26 and seeded into PCL 3D printing scaffolds. The PFFM provides a microenvironment for BMSCs, significantly promotes adhesion, and ensures cell activity and Usp26 supplementation that stabilizes β-catenin protein significantly facilitates BMSCs to express osteogenic phenotypes. In vivo experiments have shown that PFFM effectively accelerates intervertebral bone fusion. Therefore, PFFM can provide new ideas and alternatives for using USP26 for intervertebral fusion and other hard-to-repair bone defect diseases and is expected to provide clinical translational potential in future treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.