Abstract
Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes. While several types of degraders that harness the proteasome or the lysosome have been developed, a technology that simultaneously degrades targets and accelerates cellular autophagic flux remains unavailable. In this study, we developed a general chemical tool by which given intracellular proteins are targeted to macroautophagy for lysosomal degradation. This platform technology, termed AUTOTAC (AUTOphagy-TArgeting Chimera), employs bifunctional molecules composed of target-binding ligands (TBLs) linked to autophagy-targeting ligands (ATLs). Upon binding to targets via the TBL, the ATL binds the ZZ domain of the otherwise dormant autophagy receptor SQSTM1/p62 (sequestosome 1), which activates SQSTM1 associated with targets and sequesters them into oligomeric species for autophagic targeting and lysosomal degradation. AUTOTACs were used to degrade various oncoproteins or aggregation-prone proteins in neurodegeneration both in vitro and/or in vivo. We suggest that AUTOTAC provides a platform for selective proteolysis as a research tool and in drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.