Abstract
Plants deploy an arsenal of chemical and physical defenses against arthropod herbivores, but it may be most cost efficient to produce these only when attacked. Herbivory activates complex signaling pathways involving several phytohormones, including jasmonic acid (JA), which regulate production of defensive compounds. The Poaceae also have the capacity to take up large amounts of silicon (Si), which accumulates in plant tissues. Si accumulation has antiherbivore properties, but it is poorly understood how Si defenses relate to defense hormone signaling. Here we show that Si enrichment causes the model grass Brachypodium distachyon to show lower levels of JA induction when attacked by chewing herbivores. Triggering this hormone even at lower concentrations, however, prompts Si uptake and physical defenses (e.g., leaf hairs), which negatively impact chewing herbivores. Removal of leaf hairs restored performance. Crucially, activation of such Si-based defense is herbivore-specific and occurred only in response to chewing and not fluid-feeding (aphid) herbivores. This aligned with our meta-analysis of 88 studies that showed Si defenses were more effective against chewing herbivores than fluid feeders. Our results suggest integration between herbivore defenses in a model Si-accumulating plant, which potentially allows it to avoid unnecessary activation of other costly defenses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.