Abstract

The photosensitizer, methylene blue (MB), is a strong reversible inhibitor of Torpedo californica acetylcholinesterase (AChE) in the dark. Under illumination it causes irreversible inactivation. Loss of fluorescence of the singlet oxygen ((1)O(2)) trap, 9,10-dimethylanthracene, was retarded in the presence of AChE, and the rate of photo-inactivation was increased in the presence of D(2)O, indicating that inactivation was due to (1)O(2) generated by the photosensitizer. CD revealed slightly reduced far-UV ellipticity, and slightly enhanced binding of an amphiphilic probe, indicating limited unfolding of the photo-oxidized AChE. However, both near-UV ellipticity and intrinsic fluorescence were markedly reduced, suggesting photo-oxidative damage to tryptophans, (Trp) supported by appearance of novel emission peaks ascribed to N'-formylkynurenine and/or kynurenine. Like other partially unfolded forms, the photo-oxidized AChE was sensitive to proteolysis. Photosensitized inactivation produced exclusively chemically cross-linked dimers, whereas irradiation of a partially unfolded state generated higher-order oligomers. The active-site gorge of AChE contains Trp in inhibitor-binding sites that might be targets for photo-oxidation. Indeed, reversible inhibitors retard photo-inactivation, and photo-inactivation destroys their binding sites. An excess of AChE protects paraoxonase from photo-inactivation by sequestering the photosensitizer. Affinity photo-oxidation of AChE by MB thus provides a valuable model for studying site-specific photo-inactivation of enzymes in both fundamental and clinical contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.