Abstract

BackgroundEndothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema. However, it is still unknown whether astrocytic ET-1 also contributes to vasogenic edema and vasospasm during subarachnoid hemorrhage (SAH). In the present study, transgenic mice with astrocytic endothelin-1 over-expression (GET-1 mice) were used to investigate the pathophysiological role of ET-1 in SAH pathogenesis.ResultsThe GET-1 mice experienced a higher mortality rate and significantly more severe neurological deficits, blood–brain barrier breakdown and vasogenic edema compared to the non-transgenic (Ntg) mice following SAH. Oral administration of vasopressin V1a receptor antagonist, SR 49059, significantly reduced the cerebral water content in the GET-1 mice. Furthermore, the GET-1 mice showed significantly more pronounced middle cerebral arterial (MCA) constriction after SAH. Immunocytochemical analysis showed that the calcium-activated potassium channels and the phospho-eNOS were significantly downregulated, whereas PKC-α expression was significantly upregulated in the MCA of the GET-1 mice when compared to Ntg mice after SAH. Administration of ABT-627 (ETA receptor antagonist) significantly down-regulated PKC-α expression in the MCA of the GET-1 mice following SAH.ConclusionsThe present study suggests that astrocytic ET-1 involves in SAH-induced cerebral injury, edema and vasospasm, through ETA receptor and PKC-mediated potassium channel dysfunction. Administration of ABT-627 (ETA receptor antagonist) and SR 49059 (vasopressin V1a receptor antagonist) resulted in amelioration of edema and vasospasm in mice following SAH. These data provide a strong rationale to investigate SR 49059 and ABT-627 as therapeutic drugs for the treatment of SAH patients.

Highlights

  • Endothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema

  • Several clinical studies have established a correlation between elevated ET-1 levels in plasma and cerebral spinal fluid, and cerebral vasospasm-mediated ischemic damage after subarachnoid hemorrhage (SAH) [17,18,19], indicating that ET-1 may be produced during delayed ischemia after SAH

  • We have demonstrated that transgenic mice (GET-1 mice) that over-express endothelin-1 (ET-1) in the astrocytes are more susceptible to brain damage, including increased infarct volume, hemispheric swelling as well as cerebral water content, upon transient focal ischemia induced by middle cerebral artery occlusion (MCAO)

Read more

Summary

Introduction

Endothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema. It is still unknown whether astrocytic ET-1 contributes to vasogenic edema and vasospasm during subarachnoid hemorrhage (SAH). The release of ET-1 can be stimulated by oxyhemogloblin or thrombin in endothelial and smooth muscle cells [16]. It is still unclear whether astrocytic ET-1 and the mechanisms of its release are responsible for cerebral vasospasm development. Several clinical studies have established a correlation between elevated ET-1 levels in plasma and cerebral spinal fluid, and cerebral vasospasm-mediated ischemic damage after SAH [17,18,19], indicating that ET-1 may be produced during delayed ischemia after SAH

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call