Abstract

Using pesticides is a common agricultural and horticultural practice to serve as a control against weeds, fungi, and insects in plant systems. The application of these chemical agents is usually by spraying them on the crop or plant. However, this methodology is not highly directional, and so only a fraction of the pesticide actually adsorbs onto the plant, and the rest seeps through into the soil base contaminating its composition and eventually leaching into groundwater sources. Electrochemical sensors which are more practical for in situ analysis used for pesticide detection in soil runoff systems are still in dearth, while the ones published in the literature are attributed with complex sensor modification/functionalization and preprocessing of samples. Hence, in this work, we present a highly intuitive electroanalytical sensor approach toward rapid (10 min), on-demand screening of commonly used pesticides—glyphosate and atrazine—in soil runoff. The proposed sensor functions based on the affinity biosensing mechanism driven via thiol cross-linker and antibody receptors that holistically behaves as a recognition immunoassay stack that is specific and sensitive to track test pesticide analytes. Then, this developed sensor is integrated further to create a pesticide-sensing ecosystem using a front-end field-deployable smart device. The method put forward in this work is compared and validated against a standard laboratory potentiostat instrument to determine efficacy, feasibility, and robustness for a point-of-use (PoU) setting yielding LoD levels of 0.001 ng/ml for atrazine and 1 ng/ml for glyphosate. Also, the ML model integration resulted in an accurate prediction rate of ≈80% in real soil samples. Therefore, a universal pesticide screening analytical device is designed, fabricated, and tested for pesticide assessment in real soil runoff samples.

Highlights

  • There is a major requirement at present to address environmental sustainability in ecological and agricultural practices as highlighted by the United Nations “2030 Agenda for sustainable development” (Arduini et al, 2020)

  • The effect caused by the pesticide residues in soil is two-fold: 1. There is a definite relationship between long-term, low-dose exposure of any kind either ingestion, inhalation, or through contact and human health effects such as immune suppression, hormone disruption, diminished intelligence, reproductive abnormalities, and cancer; 2. impact on the environment via surface/groundwater contamination and soil contamination–mediated damage to non-target species–soil biomass, and microorganisms causing decreased crop throughputs and food quality, affecting global food security (Aktar et al, 2009; Lo, 2010; Joko et al, 2017; Gunstone et al, 2021)

  • —citing all these factors and requirements—in this work, we evaluate an electroanalytical sensor approach toward rapid, on-demand screening of 2 commonly used pesticides in this proof-of-feasibility study—glyphosate and atrazine in soil runoff which have a half-life around 60 days1 and 60–75 days (Hanson et al, 2020) in soil, respectively

Read more

Summary

Introduction

The potential for a sensor system that detects in field is given as follows: the levels of pesticide residues in soil runoff is immense and would be beneficial to understand the negative effect of mismanagement and overuse of pesticide agents on food safety and overall quality of life This field-deployable sensor probe would help promote responsible agricultural practices and curb the overapplication of harmful agents to the soil (Ali et al, 2020). As mentioned previously, the cost of using these techniques is large overhead in terms of sample collection and transfer, need for sample processing, complex machinery, and reagents as well as the added costs associated with all these steps Detection of these pesticides in trace levels in real time in the soil matrix (runoff water) is highly desirable with minimal or no pre-sample processing step involved

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.